

Insights from Tertiary Structure, Chromatin Modifications, and Nuclear Organization

Iñaki Martin-Subero ICREA, IDIBAPS, UB Barcelona, Spain

Epigenetic information controls gene expression

Three epi & genetic stories

Story 1: Reference epigenomes Alterations in the chromatin landscape

Story 2: Genetic predisposition and chromatin Linking risk-loci to chromatin function

> Story 3: 3D genome stucture Broad changes in 3D interactions

Story 1: Reference epigenomes of CLL

Story 1: De novo chromatin activation in CLL

Beekman et al., Nat Med 2018

International Workshop on CLL 20-23 SEPTEMBER 2019 EDINBURGH

Story 1: Different chromatin landscapes in uCLL and mCLL

Beekman et al., Nat Med 2018

Story 1: Different chromatin landscapes in uCLL and mCLL

Story 1: Association between genetic changes and chromatin

Story 2: Genetic predisposition and chromatin

The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia

Renée Beekman^{1,2}, Vicente Chapaprieta³, Núria Russiñol¹, Roser Vilarrasa-Blasi³, et al.

Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia

Phillip J. Law et al.#

Richard Houlston

Can the chromatin landscape help us to better understand genetic predisposition?

Story 2: Most risk-loci are located in regulatory elements

ActProm 🗌 WkProm 🖬 PoisProm StrEnh1 🧧 StrEnh2 🛄 WkEnh TxnTrans 🔳 TxnElong 🗌 WkTxn

📕 H3K9me3 Repr 🔤 H3K27me3 Repr 🗌 Het;LowSign

International Workshop on CLL 20-23 SEPTEMBER 2019 EDINBURGH

Speedy & Beekman et al., Nat Comms 2019

Story 2: Target genes & altered TF binding affinity

QTL analysis

tion tion

61 QTLs

28 risk loci

36 QTLs

23 risk loci

19 QTLs

9 risk loci

	et a while per							
		1	اللي من	1270 M	Amer	e ^{e'}		
SNP	Position	<i>P</i> .	×**	Q.	6-	Candidate target genes		
rs35923643	chr11:123484683					GRAMD1B		
rs6489882	chr12:112943571					OAS1, OAS3		
rs11637565	chr15:69728186					TLE3		
rs2511713	chr8:102565637					UBR5		
rs7558911	chr2:201159226					CASP8, CFLAR, PPIL3		
rs7690934	chr4:108104709					LEF1		
rs1679013	chr9:22206988					DMRTA1		
rs8024033	chr15:40111456					BMF		
rs391855	chr16:85895015					IRF8		
rs3755397	chr2:241355498					SEPT2, ING5, MTERF4		
rs140522	chr22:50532837					CHKB-CPT1B, CPT1B, ODF3B, TYMP		
rs2466029	chr8:127188726							
rs1002015	chr2:110859042							
rs210143	chr6:33579153							
rs142215530	chr15:56485493							
rs1036935	chr18:50317164							
rs41271473	chr1:228744549					CCSAP		
rs6708784	chr2:111169802					BCL2L11		
rs1317082	chr3:169779797					MYNN		
rs3800461	chr6:34648545					C6orf106, SNRPC, TAF11		
rs4869818	chr6:154150090					IPCEF1		
rs6586163	chr10:88992261					ACTA2, FAS		
rs2651823	chr11:2300420					C11orf21, TSPAN32		
rs7254272	chr19:4069121					TBXA2R		
rs57214277	chr4:184333619							
rs71597109	chr4:101819845							
rs9880772	chr3:27736288							
rs7705526	chr5:1285859							
rs9392504	chr6:412802							
rs73718779	chr6:2969044							
rs2267708	chr7:124752458							
rs4368253	chr18:59955055							
rs34004493	chr2:230289297					SP140, SP140L		
rs73192661	chr3:188411006					LPP		
rs77551289	chr18:63121512					VPS4B		
rs874460	chr19:46673495					FKRP, PRKD2		

Potential functional SHP (seatine) SHP)	Transcription factor	Risk allele	Binding affinity risk allele	Naif
rs210142 (rs210143)	SPH	C	Decreased	CTCCTCT
rs 12531150 (rs142215530)	PAX5	т	Decreased	ASACCAASIC
rs4767033 (rs6483882)	NEF2A	т	Decreased	AATSTACA ATAGA
rs919054 (rs11637565)	TCF3	G	hceased	RE CLACETOT
rs7761411 (rs4569815)	NFATC1	т	horeased	ATTICCASE ANTI CCASE
rs 108 3367 (rs4368253)	FOXM	G	horeased	T. TGATTOGEE

30 QTLs

14 risk loci

Story 3: From 1D to 3D genomes in CLL

Huge impact on our understanding and the clinical management of hematological malignancies

Story 3: Changes in the 3D genome structure

28% of the 3D genome changes

during B-cell differentiation

• The 3D genome structure changes during cell differentiation and is maturation stage-specific

• CLLs and MCLs cluster are in the same cluster as NBCs and MBCs

• CLLs and MCL show differential 3D structures

72% is stable in normal B cells Can we detect changes

in the 3D genome structure of CLL?

Vilarrasa-Blasi & Soler-Vila et al., submitted https://www.biorxiv.org/content/10.1101/764910v2

Story 3: CLL-specific loss of 3D interactions

International Workshop on CLL 20-23 SEPTEMBER 2019 EDINBURGH

How is *EBF1* structurally organized into the nucleus?

Vilarrasa-Blasi & Soler-Vila et al., submitted https://www.biorxiv.org/content/10.1101/764910v2

Story 3: Structural model of EBF1 in normal B cells and CLL

20-23 SEPTEMBER 2019 EDINBURGH

https://www.biorxiv.org/content/10.1101/764910v2

- The regulatory chromatin landscape is extensively altered in CLL as a whole and in IGHV-based subtypes, and seems to be mediated by the action of few TF families.
- The great majority of the SNPs associated with CLL risk are located in regions enriched in regulatory elements.
- CLL shows an altered 3D genome structure and DNA blocks changing their level of 3D interactions contain genes related to disease pathogenesis.

Acknowledgements

IDIBAPS, Hospital Cinic and Universitat de Barcelona, Spain Renee Beekman Roser Vilarrasa-Blasi Vicente Chapaprieta Núria Russiñol Núria Verdaguer-Dot Marta Kulis Martí Duran-Ferrer Guillem Clot Sílvia Beà Dolors Colomer Elías Campo

Radboud University Nijmegen, The Netherlands Joost H.A. Martens Hendrik G. Stunnenberg

Euopean Bioinformatics Institute, Hinxton, UK Avik Datta Ernesto Lowy Paul Flicek

University of Navarra, Spain Xabier Agirre Felipe Prosper Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain Paula Soler-Vila Marco Di Stefano Irene Farabella, Marc Marti-Renom

The Institute of Cancer Research (ICR), London, UK Helen Speedy Giulia Orlando Philip Law Dan Catovsky Richard Houlston

Commission

20-23 SEPTEMBER 2019 EDINBURGH