

THE OHIO STATE UNIVERSITY

Gene expression signatures predict time-to-progression after front-line chemoimmunotherapy for CLL

Carmen D. Herling*, Kevin R. Coombes*, Axel Benner, Johannes Bloehdorn, Lynn L. Barron, Zachary B. Abrams, Tadeusz Majewski, Jolanta E. Bondaruk, Jasmin Bahlo, Kirsten Fischer, Michael Hallek, Stephan Stilgenbauer, Bogdan A. Czerniak, Christopher Oakes, Alessandra Ferrajoli, Michael J. Keating, Lynne V. Abruzzo

Acknowledgements and Disclosures

Lynne V. Abruzzo

- CDH: grants from Hoffmann-La Roche
- KRC: grants from NIH/NCI and NIH/NLM
- JBa: honoraria and travel support from Roche
- KF: non-financial support from Roche; personal fees from AbbVie.
- MH: grants and/or other support from Roche, AbbVie, Gilead, Janssen, and Celgene
- SS: grants, personal fees and non-financial support from Hoffmann La-Roche; AbbVie, Amgen, AstraZeneca, Celgene, Gilead, GSK, Hoffmann La-Roche, Janssen, Novartis, Pharmacyclics, and Sunesis.
- MJK: grants from AbbVie.
- LVA: grants from NCI/NIH.
- Carmen D. Herling

MDACC cohort (training)

GCLLSG/CLL8 cohort (validation)

Clinical characteristics

		MDACC		GCLLSG/CLL8			МІ	GCLLSG/CLL8	
		All (n = 101)	Unmutated (n = 66)	Unmutated (n = 109)			All (n = 101)	Unmutated (n = 66)	Unmutated (n =
Median age at Dx		56 (49-62)	56 (49-63)	60 (53-65)	ZAP70	Positive	49 (55.7%)	43 (74.1%)	31 (47.7%)
Gender	Male	76 (75.2%)	52 (78.8%)	86 (78.9%)		Negative	39 (44.3%)	15 (25.9%)	34 (52.3%)
	Female	25 (24.8%)	14 (21.2%)	23 (21.1%)	Ν	lot available	13	8	44
Rai stage	0-2	77 (76.2%)	52 (78.8%)	63 (69.2%)	CD38 ex	pr. <30%	75 (74.3%)	45 (68,2%)	59 (58%)
	≥3	24 (23.8%)	14 (21.2%)	28 (30.8%)		>30%	26 (25 7%)	21 (31.8%)	42 (42%)
	Not available	0	0	18		20070	20 (20.7 %)	21 (01.070)	42 (42 /0)
IGHV statu	s Mutated	35 (34.7%)	0 (0%)	0 (0%)	Ν	lot available	0	0	8
	Unmutated	66 (65.3%)	66 (100%)	109 (100%)	Cytoger	etics			
β2M	≤4 mg/L	68 (67.3%)	42 (63.6%)	85 (78.7%)		del17p	1 (1.0%)	1 (1.5%)	13 (11.9%)
	>4 mg/L	33 (32.7%)	24 (36.4%)	23 (21.3%)		del11q	17 (16.8%)	16 (24.2%)	42 (48.5%)
	Not available	0	0	1		+12	17 (16.8%)	10 (15.2%)	3 (2.8%)
WBC	≤150x10 ⁹ /L	83 (82.2%)	50 (75.8%)	84 (77.1%)	F	ISH normal	31 (30.7%)	24 (36.4%)	22 (20.2%)
	>150x10 ⁹ /L	18 (17.8%)	16 (24.2%)	25 (22.9%)		del13q	35 (34.7%)	15 (22.7%)	29 (26.6%)
	Not available	0	0	1					

Hierarchical clustering using genes having univariate association with time to progression finds three subtypes with different outcomes

Bootstrap validated the consistency of gene selection and clusters in the MDACC cohort

Used LDA with 5 PCA predictors to identify unmutated samples that could be reliably separated into two groups

The 17-gene model (with coefficients) contrasts "purple" vs. "cyan" gene groups

Rank	Symbol	Std. Coef.	Gene Name	Entrez Gene ID	Gene Cluster	Rank	Symbol	Std. Coef.	Gene Name	Entrez Gene ID	Gene Cluster
1	OSBPL5	+0.633	Oxysterol binding	114879	purple	9	PDE8A	-0.159	Phosphodiesterase 8A	5151	cyan
2	MSI2	+0.234	Musashi RNA binding	124540	purple	10	RGS10	+0.150	Regulator of G-protein signaling 10	6001	purple
2	KSR2 ·	+0.219	Kinase suppressor of	283455	purple	11	TSPO	+0.145	Translocator protein	706	purple
3			RAS2			10		-0 120	Cytokine receptor like	51370	ovan
4	NME1	+0.206	NME/NM23 nucleoside	4830	purple	12	URLF3	-0.129	factor 3	51579	Cyan
			diphosphate kinase 1			13	DCAF12	+0.058	DDB1 and CUL4	25853	nurnle
5 SLC35A	SLC35A4	+0.199	Solute carrier family 35	113829	purple	10	ADSI	+0.040	associated factor 12	158	purple
			member A4			14			Adenylosuccinate		
6	TXN	+0.188	Thioredoxin	7295	95 purple			0.010	lyase	100	parpio
7	LAG3	+0.187	Lymphocyte activating 3	3902	red	15	AQP1	-0.037	Aquaporin 1 (Colton blood group)	358	cyan
8	ZNHIT1	+0.162	Zinc finger HIT-type containing 1	10467	purple	16	GRN	+0.025	Granulin	2896	purple
						17	TTC38	+0.018	Tetratricopeptide	55020	purple

repeat domain 38

Performance of the 17-gene model on the MDACC cohort, including training samples

Validation of cumulative incidence of progression in the GCLLSGCLL8 cohort

Gene Enrichment Analysis suggests that differences in metabolic activity distinguish patients with different outcomes

Purple gene cluster

- oxidoreductase activity (GO:0016491; FDR $q=1.01 \times 10^{-8}$),
- glycosyl compound, nucleoside, and ribonucleoside metabolic processes (GO:1901657, GO:0009116, GO:0009119; all with FDR q=1·22 × 10⁻¹¹);
- mitochondrion (GO:0005739; FDR q=9.79 × 10^{-16}).
- metabolic pathways (KEGG:132956; FDR q= 3.04×10^{-13})
- oxidative phosphorylation (KEGG:82942; FDR $q=4.31 \times 10^{-7}$).

Cyan gene cluster

- ATP binding (GO:0005524; FDR q=2.38 \times 10⁻³) and
- purine ribonucleoside triphosphate binding (GO:0035639; FDR q= 2.38×10^{-3}).
- nucleic acid binding (GO:0003676; p=6·20 × 10^{-4}),
- DNA-templated transcription (GO:0006351; p=5·28 × 10⁻⁶),
- the nucleus (GO:0005634; p=2·17 × 10⁻⁸)
- zinc-finger transcription factors (UniProt keywords, $p=4.78 \times 10^{-7}$; sequence features $p=1.47 \times 10^{-5}$)

Lancet Oncology Publication planned for 24 September 2019

- Time-to-progression after front-line fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy for chronic lymphocytic leukaemia: a retrospective, multicohort study
- Carmen D. Herling*, Kevin R. Coombes*, Axel Benner, Johannes Bloehdorn, Lynn L. Barron, Zachary B. Abrams, Tadeusz Majewski, Jolanta E. Bondaruk, Jasmin Bahlo, Kirsten Fischer, Michael Hallek, Stephan Stilgenbauer, Bogdan A. Czerniak, Christopher Oakes, Alessandra Ferrajoli, Michael J. Keating, Lynne V. Abruzzo

Gene Enrichment Analysis suggests that differences in metabolic activity distinguish patients with different outcomes

Oxidative Phosphorylation : purple : Expr Log Ratio

© 2000-2017 QIAGEN. All rights reserved.