Dr Anthony Mato - Disclosures

- Research
 - TG Therapeutics
 - Pharmacyclics
 - Abbvie
 - Johnson and Johnson
 - Acerta / AZ
 - Regeneron
 - DTRM BioPharma
 - Sunesis
 - Loxo

- Advisory / Consultancy
 - TG Therapeutics
 - Pharmacyclics
 - Abbvie
 - Johnson and Johnson
 - Acerta / AZ
 - DTRM BioPharma
 - Sunesis
 - Celgene
 - Verastem

Predicting tumor lysis syndrome (TLS) in venetoclax-treated CLL patients

Objectives

- To describe rates of TLS observed in clinical practice and clinical trial settings
- To understand factors at baseline that may improve prediction of TLS events in addition to ALC and lymph node size.

Materials and Methods

- Design: Multicenter, retrospective cohort study of 339 CLL pts treated with venetoclax
- Data: Collected demographics, baseline characteristics, TLS risk and prophylaxis, and TLS occurrence (Howard criteria)
- Analysis: Test association between risk factors and TLS development (OR estimated with univariable logistic regression)
- Model: Multivariable logistic regression of statistically significant (p<0.05) predictors of TLS was performed.
 Calculated area under the receiver operator characteristic curve for the model including independent predictors of TLS

Baseline Characteristics				
Total Cohort n=339				
Age, median (range)	67 (37-91)			
Male	69%			
Race, White	85%			
Ven monotherapy	79%			
Ven on clinical trial	13%			
R/R	94%			
Unmutated IGHV	84% (n=118)			
del(17p)	43% (n=323)			
Complex karyotype	39% (n=213)			
Prior lines of therapy, median (range)	3 (0-15)			
Prior ibrutinib	78% (n=319)			

TLS risk, prophylaxis and rates Univariable analysis of TLS development risk


TLS Risk Stratification		Univariable Analysis	Odds	p Value
Low TLS Risk	38%	Offivariable Affaiysis	Ratio	p value
Intermediate TLS Risk	34%	Sex (female vs. male)	1.2	0.62
High TLS Risk	28%		2.9	0.015
CrCl < 80 mL/min	45%	Creatinine clearance (≤80 vs >80 mL/min)		
Imaging performed	94%			
TLS Prophylaxis Strategies		Complex karyotype	2.2	0.04
Allopurinol	93% (n=206)	del(17p)	0.93	0.84
Rasburicase	43% (n=307)	IGHV unmutated	0.76	0.74
Normal Saline	87% (n=204)	Prior ibrutinib exposure	0.74	0.48
Planned hospitalization, med (range)	2 (0-5)	Venetoclax administration (monotherapy vs. combo)	2.9	0.09
≥1 planned hospitalization	75%	TIC wiels		
TLS Rates		TLS risk		
Overall TLS rate	10% (35/339)	medium vs. low	2.4	0.09
Clinical TLS	9 cases	high vs. low	4.2	0.004
Lab TLS	26 cases	high vs. low + medium	2.6	0.01

Multivariable analysis of risk of TLS development

and conclusions

Multivariable Analysis	Odds Ratio	95% C.I.	p value
TLS Risk (high vs. low + medium)	5.87	(2.42, 14.3)	<0.001
Creatinine Clearance (<80 vs. ≥80 mL/min)	2.53	(1.03, 6.25)	0.044
Complex karyotype (present vs. absent)	2.36	(0.98, 5.70)	0.055

ROC curve of multivariate model including TLS risk group (high vs. low + medium) and creatinine clearance (< 80 mL/min vs. ≥ 80 mL/min), area under the ROC curve is 74.6%.

Conclusions

- Renal function matters: Patients with impaired renal function (creatinine clearance < 80 mL/min)
 are at increased risk of TLS independent of tumor burden
- Further study of creatinine clearance as a continuous variable to refine risk is warranted and future models of TLS risk stratification should consider incorporation of renal function
- Practitioners may consider modifying prophylaxis and monitoring strategies based on renal function to decrease observed rates of TLS
- Complex karyotype did not reach statistical significance as a predictor of TLS, though further study in larger series is warranted

 Memorial Sloan Kettering Cancer Center