

ASCEND Phase 3 Study of Acalabrutinib vs Investigator's Choice of Rituximab Plus Idelalisib or Bendamustine in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia

Paolo Ghia,¹ Andrzej Pluta,² Malgorzata Wach,³ Daniel Lysak,⁴ Tomas Kozak,⁵ Martin Simkovic,⁶ Polina Kaplan,⁷ Iryna Kraychok,⁸ Arpad Illes,⁹ Javier De La Serna,¹⁰ Sean Dolan,¹¹ Phillip Campbell,¹² Gerardo Musuraca,¹³ Abraham Jacob,¹⁴ EJ Avery,¹⁵ Jae Hoon Lee,¹⁶ Wei Liang,¹⁷ Priti Patel,¹⁷ Cheng Quah, ¹⁷ and <u>Wojciech Jurczak</u>¹⁸

¹Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy; ²Department of Hematological Oncology, Oncology Specialist Hospital, Brzozow, Poland; ³Department of Hemato-Oncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland; ⁴Fakultní Nemocnice Plzeň, Pilsen, Czech Republic; ⁵Fakultní Nemocnice Královske Vinohrady, Prague, Czech Republic; ⁶University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic; ⁷Dnipropetrovsk City Clinical Hospital No. 4, Dnipropetrovsk, Ukraine; ⁸National Cancer Institute, Kiev, Ukraine; ⁹University of Debrecen, Faculty of Medicine, Department of Hematology, Hungary; ¹⁰Hospital Universitario 12 de Octubre, Madrid, Spain; ¹¹Saint John Regional Hospital, University of New Brunswick, New Brunswick, Canada; ¹²Barwon Health, University Hospital Geelong, Geelong, Victoria, Australia; ¹³Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy; ¹⁴The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom; ¹⁵Nebraska Hematology Oncology, Lincoln, NE, USA; ¹⁶Gachon University Gil Medical Center, Incheon, South Korea; ¹⁷Acerta Pharma, South San Francisco, CA, USA; and ¹⁸Department of Hematology, Jagiellonian University Medical College, Krakow, Poland

The study was sponsored by Acerta Pharma, a member of the AstraZeneca Group.

Disclosures

Wojciech Jurczak: consultant/advisor for AstraZeneca, Janssen, Loxo, and TG Therapeutics; research funding from AstraZeneca, Janssen, Merck, and TG Therapeutics

Background

- This randomized, global, multicenter, open-label Phase 3 study evaluated the efficacy and safety of acalabrutinib monotherapy vs investigator choice therapy in R/R CLL
- Bendamustine plus rituximab (BR) and the PI3K inhibitor idelalisib plus rituximab (IdR) are standard therapies for relapsed/refractory (R/R) CLL¹⁻⁴
- For BR, overall response rate (ORR) is 45% to 68% and median progression-free survival (PFS) is 14 to 17 months^{5,6}; for IdR, ORR is 84% and median PFS is 19 months⁷
- Acalabrutinib is more selective for Bruton tyrosine kinase (BTK), with less off-target kinase inhibition compared with ibrutinib in vitro⁸

Larger red circles represent stronger inhibition

 ${\sf CLL} = {\sf chronic lymphocytic leukemia; PI3K = phosphinositide 3-kinase; R/R = relapsed/refractory.}$

1. Eichhorst B, et al. Ann Oncol. 2015;26(suppl 5):v78-84. 2. NCCN Clinical Practice Guidelines in Oncology: Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia, version 4.2019. https://www.nccn.org/professionals/physician_gls/pdf/cll.pdf. Accessed June 11, 2019. 3. Fischer K, et al. J Clin Oncol. 2011;29(26):3559-66. 4. Furman RR, et al. N Engl J Med. 2014;370(11):997-1007. 5. Seymour JF, et al. N Engl J Med. 378(12):1107-1120. 6. Zelenetz AD, et al. Lancet Oncol. 2017;18(3):297-311. 7. Sharman JP, et al. J Clin Oncol. 2019;37(16):1392-1402. 8. Barf T, et al. J Pharmacol Exp Ther. 2017;363(2):240-252.

Kinase Selectivity Profiling at 1 μM

ASCEND Study Design (ACE-CL-309)

Crossover from IdR/BR arm allowed after confirmed disease progression

• Interim analysis was planned after occurrence of ~79 PFS events (2/3 of primary event goal)

^aFirst dose at 375 mg/m², subsequent doses (up to 8) at 500 mg/m² every 2 wk for 4 infusions, then every 4 wk for 3 infusions.

^bOn day 1 and day 2 of each cycle.

 $^{\rm c} First$ dose at 375 mg/m², subsequent doses at 500 mg/m² on day 1 of each cycle for up to 6 cycles.

BID = twice daily; CLL = chronic lymphocytic leukemia; ECOG PS = Eastern Cooperative Oncology Group performance status; IRC = independent review committee; IV = intravenous; ORR = overall response rate; OS = overall survival; PFS = progression-free survival; PO = orally.

Patient Demographics and Baseline Characteristics

	Acalabrutinib	ldR/BR
Characteristic	N=155	N=155
Age, median (range), y	68 (32-89)	67 (34-90)
Bulky disease ≥5 cm, n (%)	76 (49)	75 (48)
Rai stage III-IV, n (%)ª	65 (42)	64 (41)
No. prior therapies, median (range)	1 (1-8)	2 (1-10)
1	82 (53)	67 (43)
2	40 (26)	46 (30)
3	17 (11)	24 (15)
≥4	16 (10)	18 (12)
Prior therapy type, n (%)		
Purine analogues	109 (70)	104 (67)
Alkylators	133 (89)	131 (85)
Bendamustine	47 (30)	48 (31)
Anti-CD20 monoclonal antibodies	130 (84)	119 (77)
Stem cell transplantation	1(1)	1(1)
Cytogenetic status, n/n (%)		
del(17p)	28/155 (18)	21/154 (14)
del(11q)	39/155 (25)	44/154 (29)
Unmutated IGHV ^c	118/154 (77)	125/153 (82)
Complex karyotype ^d	50/154 (32)	46/153 (30)

^aDerived based on data collected at screening.

°1 patient in the acalabrutinib arm and 2 patients in the IdR/BR arm had missing data; 3 and 2 patients, respectively, were not evaluable.

^d1 patient in the acalabrutinib arm and 2 patients in the IdR/BR arm had missing data; 7 and 15 patients, respectively, were not evaluable.

BR = bendamustine plus rituximab; IdR = idelalisib plus rituximab; IGHV = immunoglobulin heavy-chain variable region gene.

IRC-Assessed PFS Superior for Acalabrutinib vs IdR/BR

Acala = acalabrutinib; BR = bendamustine plus rituximab; HR = hazard ratio; IdR = idelalisib plus rituximab; IRC = independent review committee; NR = not reached; PFS = progression-free survival.

20-23 SEPTEMBER 2019 EDINBURGH

IRC-Assessed PFS Superior for Acalabrutinib vs IdR/BR

nternational Workshop on CL

20-23 SEPTEMBER 2019 EDINBURGH

7

IRC-Assessed PFS in Patients With High-Risk Cytogenetic Features^a

International Workshop on CLL

20-23 SEPTEMBER 2019 EDINBURGH

Acala = acalabrutinib; BR = bendamustine plus rituximab; HR = hazard ratio; IdR = idelalisib plus rituximab; IGHV = immunoglobulin heavy-chain variable region gene; IRC = independent review committee; NR = not reached; PFS = progression-free survival.

IRC-Assessed PFS Benefit With Acalabrutinib Consistent Across Subgroups

Subgroup	No. of No. of I Acala	Events/ Patients IdR/BR		Hazard Ratio (95% Cl)	Subgroup	No. of I No. of F Acala	Events/ Patients IdR/BR		Hazard Ratio (95% CI)
Overall	27/155	68/155	-•-	0.30 (0.19, 0.48)					
Age group <65 years ≥65 years	7/58 20/97	27/57 41/98	_ • _	0.20 (0.09, 0.46) 0.40 (0.23, 0.68)	No. of prior therapies 1-3 ≥4	21/139 6/16	59/138 9/17	_ • -	0.27 (0.16, 0.44)
Sex Male Female	22/108 5/47	45/100 23/55	_ 	0.34 (0.20, 0.57) 0.21 (0.08, 0.57)	Presence of del(17p) Yes No	4/28 23/127	12/26 56/129		0.21 (0.07, 0.68) 0.33 (0.21, 0.54)
ECOG at randomizato 0 or 1 2	n 24/137 3/18	60/135 8/20	_ _	0.30 (0.18, 0.48) - 0.36 (0.10, 1.37)	TP53 mutation Yes No	8/39 19/113	20/34 48/119	 	0.24 (0.11, 0.56) 0.33 (0.20, 0.57)
Rai stage at screening Stage 0-II Stage III-IV	16/90 11/65	35/90 33/64	_ -	0.36 (0.20, 0.66) 0.24 (0.12, 0.47)	IGHV Mutated Unmutated	5/33 22/118	10/26 56/125	 	0.32 (0.11, 0.94) 0.32 (0.19, 0.52)
Bulky disease <5 cm ≥5 cm	14/79 13/76	28/80 40/75	 	0.36 (0.19, 0.69) 0.26 (0.14, 0.49)	Complex karyotype Yes No	12/50 12/97	24/46 40/92		0.32 (0.16, 0.63) 0.23 (0.12, 0.44)
		Favors A	050.1 0.5 calabrutinib	15 Favors IdR/BR			Favors A	050.1 0.5 calabrutinib	15 Favors IdR/BR

International Workshop on CLL

Acala = acalabrutinib; BR = bendamustine plus rituximab; ECOG = Eastern Cooperative Oncology Group; IdR = idelalisib plus rituximab; IGHV = immunoglobulin heavy-chain variable region gene; IRC = independent review committee; PFS = progression-free survival.

IRC-Assessed Response for Acalabrutinib and IdR/BR

Response	Acalabrutinib N=155	ldR/BR N=155	Comparison
ORR (CR + CRi + nPR + PR), % (95% Cl)	81 (74, 87)	76 (68, 82)	<i>P</i> =0.22
ORR (CR + CRi + nPR + PR + PRL), % (95% CI)	88 (82, 93)	77 (70, 83)	<i>P</i> =0.01
Best response, n (%)			
CR	0	2 (1)	
PR	126 (81)	115 (74)	
PRL	11(7)	3 (2)	
SD	9 (6)	12 (8)	
PD	2 (1)	1(1)	
Unknown	7 (5)	22 (14)	
DOR, median (95% CI), mo	NR (NR-NR)	13.6 (11.9-NR)	HR, 0.33 (0.19-0.59) <i>P</i> <0.0001
12-mo DOR rate, % (95% CI)	85 (76, 91)	60 (48, 69)	

BR = bendamustine plus rituximab; CR = complete response; CRi = complete response with incomplete bone marrow recovery; DOR = duration of response; HR = hazard ratio; IdR = idelalisib plus rituximab; IRC = independent review committee; nPR = nodal partial response; NR = not reached; ORR = overall response rate; PD = progressive disease; PR = partial response; PRL = partial response with lymphocytosis; SD = stable disease.

10

Overall Survival (Median Follow-Up, 16.1 Months)

Patient Disposition and Exposure^a

	Acalabrutinib n=154	ldR n=118	BR n=35
Received \geq 6 IV treatment cycles, n (%)	NA	92 (78)	28 (80)
Relative dose intensity (range), %	99.5 (52.5-100.0)	91.2 (46.6-100.0) ^b	96.4 (14.5-102.5) ^c
Treatment exposure (range), mo	15.7 (1.1-22.4)	11.5 (0.1-21.1) ^b	_
Discontinued treatment, n (%)			
Adverse event	17 (11) ^d	58 (49) ^b	6 (17) ^e
Disease progression	10 (6)	11 (9) ^b	1 (3)
Death	1(1)	Op	0
Completed treatment	NA	NA ^b	28 (80)
Other	2 (1)	7 (6) ^b	0

Richter transformation occurred in 4 patients (3%) in the acalabrutinib arm and 5 (3%) in the IdR/BR arm (IdR, n=4; BR, n=1)

^a3 randomized patients who were not dosed are not included in this table.

^bIdelalisib only or ^cbendamustine only.

^dEvents (n=1 each): abdominal pain, alanine aminotransferase increased, bladder transitional cell carcinoma, brain neoplasm, malignant brain neoplasm, congestive cardiac failure, cerebral ischemia, cytopenia, headache, hepatitis B, immune thrombocytopenic purpura, malignant lung neoplasm, peritonitis, prostate cancer, respiratory tract infection, and squamous cell carcinoma of the skin.

e2 patients completed B but discontinued R due to adverse events.

BR = bendamustine plus rituximab; IdR = idelalisib plus rituximab; IV = intravenous; NA = not applicable.

Safety Overview^a

AE Type, n (%)	Acalabrutinib n=154	IdR n=118	BR n=35
Patients with \geq 1 AE (all grades)	144 (94)	117 (99)	28 (80)
Serious AEs	44 (29)	66 (56)	9 (26)
Grade 3 or 4 AEs	70 (45)	101 (86)	15 (43)
Grade 5 AEs	6 (4) ^b	5 (4) ^c	2 (6) ^d

^aThe AE reporting period was longer with acalabrutinib than IdR/BR; reporting, irrespective of seriousness, ends 30 days after the last dose of study drug(s) or at documented disease progression, whichever is longer.

^bAcalabrutinib: brain neoplasm, cachexia, cerebral ischemia, malignant lung neoplasm, neuroendocrine carcinoma, and sepsis (n=1 each).

eldR: chronic cardiac failure, cardiopulmonary failure, interstitial lung disease, myocardial infarction, and pseudomonal pneumonia (n=1 each).

 $^{d}\mathsf{BR}\text{:}$ acute cardiac failure and gastric neoplasm (n=1 each).

AE = adverse event; BR = bendamustine plus rituximab; IdR = idelalisib plus rituximab.

Most Common AEs in ≥15% of Patients in Any Cohort

	Acalal n=	orutinib 154	la n=	dR 118	BR n=35		
AEs, n (%)	Any	Grade ≥3	Any	Grade ≥3	Any	Grade ≥3	
Headache	34 (22)	1 (1)	7 (6)	0	0	0	
Neutropenia	30 (19)	24 (16)	53 (45)	47 (40)	12 (34)	11 (31)	
Diarrhea	28 (18)	2 (1)	55 (47)	28 (24)	5 (14)	0	
Anemia	23 (15)	18 (12)	10 (8)	8 (7)	4 (11)	3 (9)	
Cough	23 (15)	0	18 (15)	1(1)	2 (6)	0	
Pyrexia	19 (12)	1(1)	21 (18)	8 (7)	6 (17)	1 (3)	
Fatigue	15 (10)	2 (1)	10 (8)	0	8 (23)	1 (3)	
Nausea	11(7)	0	15 (13)	1(1)	7 (20)	0	
IRR	NA	NA	9 (8)	2 (2)	8 (23)	1 (3)	

AE = adverse event; BR = bendamustine plus rituximab; IdR = idelalisib plus rituximab; IRR = infusion-related reaction; NA = not applicable.

Grade ≥3 AEs and SAEs in ≥5% of Patients in Any Group

Grade ≥3 AEs, n (%)	Acalabrutinib n=154	ldR n=118	BR n=35	SAEs, n (%)	Acalabrutinib n=154	IdR n=118	BR n=35
Any	76 (49)	106 (90)	17 (49)	Any	44 (29)	66 (56)	9 (26)
Neutropenia	24 (16)	47 (40)	11 (31)	Pneumonia	8 (5)	10 (8)	1(3)
Anemia	18 (12)	8 (7)	3 (9)	Diarrhea	1(1)	16 (14)	0
Pneumonia	8 (5)	10 (8)	1(3)	Pyrexia	1(1)	8 (7)	1(3)
Diarrhea	2 (1)	28 (24)	0				
Thrombocytopenia	6 (4)	9 (8)	1(3)				
ALT increased	2 (1)	10 (8)	1(3)				
Neutrophil count decreased	2 (1)	9 (8)	1 (3)				
Pyrexia	1(1)	8 (7)	1(3)				
AST increased	1(1)	6 (5)	1(3)				
Transaminases increased	0	6 (5)	0				
Constipation	0	0	2 (6)				

AE = adverse event; ALT = alanine aminotransferase; AST = aspartate aminotransferase; BR = bendamustine plus rituximab; IdR = idelalisib plus rituximab; SAE = serious AE.

Events of Clinical Interest for Acalabrutinib

	Acalat n=	orutinib 154	lo n=:	IR 118	BR n=35		
AEs, n (%)	Any	Grade ≥3	Any	Grade ≥3	Any	Grade ≥3	
Atrial fibrillation	8 (5)	2 (1)	4 (3)	1(1)	1 (3)	1 (3)	
Hypertension	5 (3)	3 (2)	5 (4)	1(1)	0	0	
Bleeding	40 (26)	3 (2) ^a	9 (8)	3 (3) ^b	2 (6)	1 (3) ^c	
Infections	87 (56.5)	23 (14.9)	77 (65.3)	33 (28.0)	17 (48.6)	4 (11.4)	
SPM, excluding NMSC	10 (6) ^d	5 (3)	3 (3)	0	1 (3)	1 (3)	

International Workshop on CLL

^aIncludes Grade 3 gastrointestinal hemorrhage (n=2) and Grade 4 immune thrombocytopenic purpura (n=1).

^bIncludes Grade 4 immune thrombocytopenic purpura (n=1), Grade 3 hematuria (n=1), and Grade 3 gastrointestinal hemorrhage.

cIncludes Grade 3 anemia and Grade 3 tumor hemorrhage, both in a single patient.

^dSquamous cell carcinoma (n=3 patients); squamous cell carcinoma of the lip, metastatic squamous cell carcinoma, malignant melanoma and malignant brain neoplasm (n=1 patient); and malignant lung neoplasm, bladder transitional cell carcinoma, neuroendocrine carcinoma, prostate cancer (n=1 patient each).

BR = bendamustine plus rituximab; IdR = idelalisib plus rituximab; NMSC = nonmelanoma skin cancer; SPM = second primary malignancy.

Conclusions

- In the ASCEND study:
 - Acalabrutinib monotherapy was superior to IdR/BR in prolonging IRC-assessed PFS in patients with R/R CLL
 - PFS improvement was observed across subgroups, including high-risk features
 - Responses to acalabrutinib were durable
 - Acalabrutinib monotherapy had a more tolerable safety profile than IdR/BR
- The Phase 3 ELEVATE-TN study investigating acalabrutinib-obinutuzumab and acalabrutinib monotherapy as first-line therapy compared with obinutuzumab-chlorambucil (NCT02475681) has met the primary endpoint of IRC-assessed PFS
- Acalabrutinib has demonstrated efficacy in previously untreated and R/R CLL and may be considered as an option in the future treatment paradigm

Acknowledgments

• We would like to thank all patients, families, members of the independent data monitoring committee, study coordinators and support staff, the study team members at Acerta Pharma, a member of the AstraZeneca Group, and the study investigators from 102 sites in 25 countries:

* *		*			¢	***		#		*	
P Cannell	F Offner	S Dolan	J Mayer	M Welslau	M Preis	P Ganly	E Volodicheva	A Kafkovát	J De la Serna	TF Wang	l Ringshausen
R Harrup	H Demuynck	C Chen	R Hájek	H Hebart	A Nemets	A Kilfoyle	A Pristupa		J Garcia-Marco		A Jacob
PA Walker	K Lung Wu	C Owen	T Papajik		N Goldschmidt		Y Alexeeva		J Loscertales		100000
P Campbell	J Depaus	A Aw	D Lysák	ST.			T Konstantinova		L Yañez San		
U Hahn		M Cheung	T Kozák				V Yablokova	J Seok Kim	Segundo	l Kryachok	
R Baker		S Assouline	M Šimkovič	Y Lam Kwong		W Jurczak	K Kaplanov	SM Bang	C Ferra Coll	P Kaplan	E Avery
C Tiley					P Ghia	T Robak	T Chagorova	J Hoon Lee	I Jarque Ramos	H Pylypenko	N Burhani
K Taylor	E Spasov				G Musuraca	J Czyż	D Udovitsa	SK Sohn	M Gonzalez Diaz	G Rekhtman	
	N Tzvetkov	W			R Marasca	H Ciepłuch	6**	JC Jo		T Lysa	
	L Sivcheva	V Pejsa	V Leblond	A Rosta	M Montillo	M Wach	**			l Dyagil	
		S Basic Kinda	T Aurran-	Á Illés	G Rossi	A Pluta				N Glushko	
R Greil			Schleinitz	J Jakucs	M Spina	J Kłoczko	WS Hsieh		B Lauri		
S Heibl			G Etienne		M Gobbi		S Yeu Ong		C Karlsson		
D Heintel			B Mahé		A Rambaldi				PO Andersson		
K Geissler			A Tempescul								

Medical writing support was provided by Tiffany Brake, PhD, of Team 9 Science and funded by Acerta Pharma, a member of the AstraZeneca Group