International Workshop on CLL
20-23 SEPTEMBER 2019 EDINBURGH

Role of the B cell receptor in B cell oncogenesis

Stefano Casola, MD; PhD

No conflicts to disclose

Progression through B cell development is strictly dependent on continuous expression of a functional B cell antigen receptor (BCR)

Mature B cell neoplasms conserve BCR expression

Pro-B Pre-B Immature Mature
germinal
center

FL
DLBCL
BL MCL

Hodgkin

BCR importance for mature B cell neoplasms: hints from genetics

Klein et al. Immunol. Rev. 1998

International Workshop on CLL

Burkitt lymphoma

Follicular lymphoma

40%
$\geq 98 \%$

High
Autoantigens, high poly-reactivity

Dismal

CLL patient frequency
Homology with germline IGHV

BCR responsiveness

Antigenic

 determinantsClinical outcome

60\%
<98\%

Low, anergic BCRs
Microbial/Autoantigens
higher BCR specificity higher BCR specificity

Indolent

Ten Hacken et al., Leukemia 2019

- Stereotypic BCRs

BCR activation in malignant B cells

Inhibiting BCR signaling effectors is effective against several forms of mature B cell neoplasms

Davis, Staudt et al., Nature, 2010
Schmitz, Staudt et al., Nature, 2012
Hvranek et al., Blood 2017

Jerkeman, Staudt et al, J Intern Med. , 2017

How do malignant B cells react to $B C R$ inactivation?

BCR extinction does not prevent MYC lymphoma growth in vivo

Varano et al, Nature 2017

BCR enhances MYC lymphoma cell competitive fitness

Davis, Staudt et al., Nature, 2010
Schmitz, Staudt et al., Nature, 2012
Cheong, Chiarle et al., Nature Commun., 2016
Havranek et al. Blood 2017
Phelan et al. Nature 2018

BCR-less lymphoma subclones restore optimal fitness

The BCR signalosome controlling Myc-driven lymphoma fitness

Casola et al, Immunol. Rev. 2019
IWCLLO
International Workstop on CLL
$20-23$ SEPTEMBER 2019 ED NBURGH

Lymphoma respond to BCR loss rewiring exogenous glucose and glutamine catabolism

Lower glutaminolysis Compensatory carbon re-routing via PC

Human mature B cell neoplasms can spontaneously evolve into BCR-less variants

Varano et al, Nature 2017

Diffuse Large B cell Lymphoma lymphoma

Possible B cell tumor evolution trajectories under anti-BCR therapies

Casola et al, Immunol. Rev. 2019

Open questions

1. How Ig-less lymphomas overcome BCR requirement for survival, and how do they evolve compared to their BCR^{+}counterparts?
2. Are distinct B cell malignancies selecting similar mechanism(s) to bypass BCR inactivation?
3. Can such knowledge help design new treatments to eradicate tumor B cells resisting BCR extinction/inhibition?

Role of the CD19/PI3K δ axis in the survival of Ig-less MYC lymphomas

MYC lymphomas overcome combined BCR/CD19 loss

BCR/CD19 mutant lymphomas gain resistance to PI3K inhibition

How can lymphomas bypass the BCR/CD19/PI3K signaling axis?

Genetic mutations

Tracking lymphoma evolution in response to BCR extinction

Single cell RNA-seq

Trajectory inference of MYC Iymphoma evolution following BCR inactivation

BCR regulates the epigenetic landscape of lymphoma B cells

H3K27Ac (gene promoters)

B cell enhancers (source: Phantom 5)

BCR loss reduces protein synthesis rate in lymphoma cells

BCR-defective MYC lymphomas depend more on MTORC1 signaling

BCR-less lymphomas with chronic RAS/MAPK activation suffer from pharmacological MEK inhibition

BCR inactivation enhances radiosensitivity of Myc lymphomas

Possible influence of the BCR on MYC lymphoma immunogenicity

Fighting/preventing B cell tumor resistance to BCR inhibition: the next goals

Acknowledgments

"

Single cell transcriptional signatures discriminating specific transitions of Myc lymphoma evolution following BCR Ioss

