

A Prospective Multicenter Study of FCR Alternating with Ibrutinib in Treatment-naive Patients Chronic Lymphocytic Leukemia (CLL)

Tingyu Wang¹-², Yuting Yan¹-², Zengjun Li³, Hui Wang³, Ying Sun⁴, Xiantao Liu⁴, Rui Lyu^{1,2}, Wenjie Xiong^{1,2}, Gang An^{1,2}, Wei Liu^{1,2}, Yan Xu^{1,2}, Shuhui Deng^{1,2}, Qi Wang^{1,2}, Chenxing Du^{1,2}, Liang Huang^{1,2}, Dehui Zou^{1,2}, Yaozhong Zhao^{1,2}, Lugui Qiu^{1,2}, Shuhua Yi^{1,2}

OBJECTIVES

 This regimen aims to achieve deep remissions in CLL patients while enhancing tolerability and establishing a fixed treatment duration.

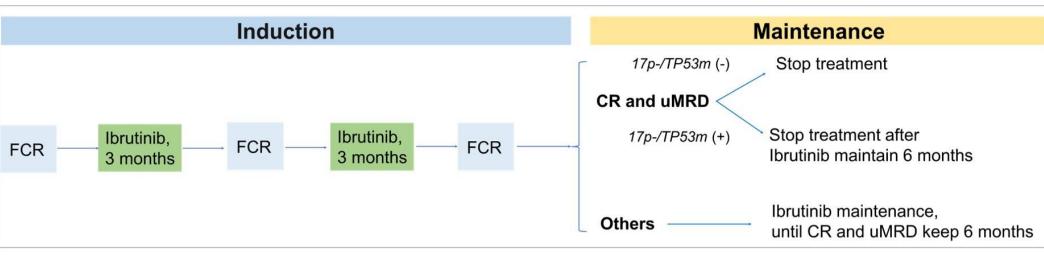
CONCLUSIONS

 The HAMBURGER regimen showed remarkable efficacy, inducing durable remissions with manageable toxicity. The high CR rate of 66% and CR-uMRD rate of 38% are particularly impressive, especially considering the fixed treatment duration. This innovative approach presents a cost-effective and patient-centric alternative to continuous BTKi therapy, especially in healthcare settings with limited access to newer treatment agents. These findings support the potential of the HAMBURGER regimen as a front-line treatment option for appropriately selected CLL patients, including those with high-risk features.

INTRODUCTION

BTK inhibitors, such as ibrutinib, have propelled chronic lymphocytic leukemia (CLL) into the era of targeted therapy¹. Nevertheless, continuous treatment with these agents not only leads to a progressive increase in resistance but also escalates treatment costs. On the other hand, the FCR regimen, consisting of fludarabine, cyclophosphamide, and rituximab, holds curative potential for CLL²⁻³. However, its clinical application is significantly hampered by severe toxicity and long-term risks⁴⁻⁵. To address these challenges, we developed the HAMBURGER regimen, a novel time-limited, alternating treatment approach combining ibrutinib with three cycles of FCR.

METHODS


- This multicenter, single-arm, phase II clinical trial (NCT03980002) enrolled 50 previously untreated CLL patients aged between 18 and 65 years.
- Primary endpoint : CR after induction therapy.
- Secondary endpoints: overall response rate (ORR), uMRD rate, progression-free survival (PFS), overall survival (OS), and safety assessment.

RESULTS

Tabel 1. Baseline characteristics

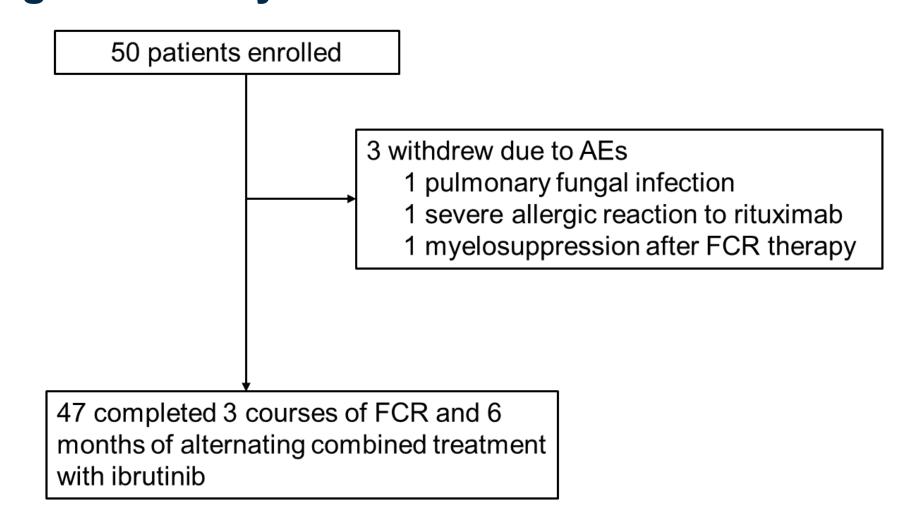
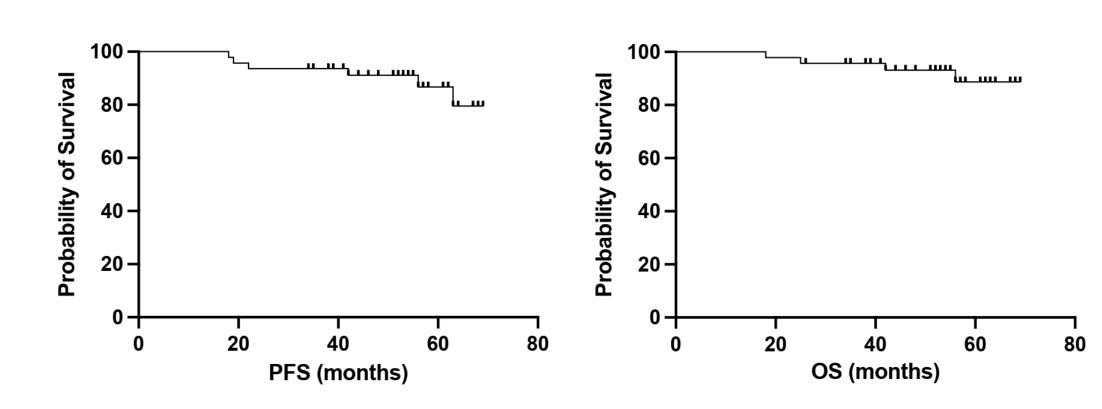

	Number (%) or median [range]
Age, years	57 (37-65)
Gender, male	36/50 (72)
IGHV unmutated	18/47 (38.2%)
TP53 del/mutated	4/50(8%)
Complex karyotype	8/43 (18.6%)
11q(ATM) deletion	3/49 (6.1%)
13q(RB1) deletion	13/49 (26.5%)
trisomy 12	13/49 (26.5%)
MYD88 mutation	14.9% (7/47)
SF3B1 mutation	12.8% (6/47)
CLL-IPI	
Low	11/50 (22)
Intermediate	23/50 (46)
High/very high-risk	16/50 (32)

Figure 1. Study design

F (Fludarabine): 25mg/m2·d, d1-3; C (Cyclophosphamide): CTX 250mg /m2·d, d1-3; R (Rituximab): 375mg/m2 d0 (first course), 500mg/m2 d0 (subsequent courses) Ibrutinib: 420mg/d


Figure 2 Study Flow

Survival

 With a median follow-up of 55 months, the 5-year PFS and OS rates were 86.7% and 88.7%, respectively.

Figure 3. Survival outcomes

Tabel 2. PFS and OS for all and subgroup patients

Subgroup		5-Year PFS (%)	P- value	5-Year OS (%)	P- value
IGHV Mutation Status (n=44)	Mutated (n=26)	80.8		84.1	0.561
	Unmutated (n=18)	94.4		94.4	
TP53 Abnormality Status (n=47)	TP53 Abnormal (n=4)	75.0	0.527	75.0	0.211
	TP53 Normal (n=43)	87.3		89.5	
IGHV Mutation Status in Non-TP53 Abnormal Patients (n=40)	Mutated (n=25)	79.7	0.342	83.1	0.190

Response Rate

Among the 4 patients with TP53 abnormalities, 3 achieved partial remission (PR) and 1 achieved CR with uMRD after induction therapy, and 2 patients achieved CR during the maintenance therapy phase.

Table 3. Response assessment over time

Number of patients (%)	Post induction (n=47)				
	All pts (n=47)	IGHV Mutated (n=26)	IGHV Unmutated (n=18)	P value	
ORR	46 (97.9)				
CR	31 (66.0)	19(73)	10 (55.6)	0.228	
PR	15 (31.9)	6(23.1)	8(44.4)	0.135	
BM-uMRD4	20 (42.6)	14 (53.8)	4 (22.2)	0.036	
CR-BM uMRD4	18 (38.3)	12 (46.2)	4(22.2)	0.105	
CR-PB uMRD4	21 (44.7)	12 (46.2)	7(38.9)	0.632	

Safety

No therapy-related myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) cases were reported, and ibrutinib dosage reduction was required in only two patients due to tolerable toxicities.

Table 3. Safety profile

Toxicity Type (n=50)	Grade 1-2	Grade 3	Grade 4				
Hematologic Toxicity							
Thrombocytopenia	16 (30.8%)	4 (7.7%)	0				
Lymphocytopenia	15 (30%)	6 (12%)	6 (3%)				
Neutropenia	6 (11.5%)	13 (25.0%)	0				
Leukopenia	16 (32%)	9 (18%)	2 (5%)				
Non-Hematologic Toxicity							
Nausea	28 (56%)	0	0				
Infusion-related reaction	18 (36%)	0	0				
Fatigue	6 (12%)	1 (2%)	0				
Rash	6 (12%)	_	0				
Hemorrhage	5 (10%)	_	0				

REFERENCES

- . Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32-42.
- . Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010:376:1164-1174.
- 3. Keating MJ, O'Brien S, Albitar M, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol. 2005:23:4079-4088.
- 4. Tam CS, O'Brien S, Wierda W, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008;112:975-980.
- 5. Fischer K, Bahlo J, Fink AM, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127:208-215

ACKNOWLEDGMENTS

This study was funded by National Nature Science Foundation of China (82200215, 82170193, 82370197), the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2022-I2M-1-022) and Beijing Xisike Clinical Oncology Research Foundation (Y-2024AZ(BTK)ZD--0074).

DISCLOSURES

The authors declare no competing financial interests.

^{1.} State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China;
2. Tianjin Institutes of Health Science, Tianjin 301600, China;
3. Department of Hematology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China;

^{4.} Department of Hematology, Chifeng Hospital of Inner Mongolia, Chifeng 024000, China