

Sequencing Single Novel Agent-Based Therapy For Patients with CLL: A Retrospective Study of Patients Treated with Covalent Bruton Tyrosine Kinase Inhibitor (cBTKi) Followed by B-Cell Lymphoma 2 Inhibitor (BCL2i) versus BCL2i Followed by cBTKi

Lindsey E. Roeker, M.D.¹, Kari G. Rabe, M.S.², Paul J. Hampel, M.D.¹, Yucai Wang, M.D. Ph.D.¹, Eli Muchtar, M.D.¹, Saad J. Kenderian, M.B., Ch.B.¹, Mazie Tsang, M.D.³, Jose F. Leis, M.D. Ph.D.³, Talal Hilal, M.D.³, Ricardo D. Parrondo, M.D.⁴, Min Shi, M.D. Ph.D.⁵, Curtis A. Hanson, M.D.⁵, Cinthya J. Zepeda Mendoza, Ph.D.⁶, Amber B. Koehler, P.A.-C., M.S.¹, Amy L. Behnken, APRN, C.N.P, M.S.¹, Catherine C. Wagner, APRN, C.N.P, D.N.P.¹, Monica I. Aasum, R.N.⁷, Kersten R. Thomas, R.N.⁷, Maria A. Nuli, R.N.⁷, Rachel J. Bailen, Pharm.D., R.Ph., BCPS⁸, Susan M. Schwager, B.S.¹, Susan L. Slager, Ph.D.^{1,2}, Neil E. Kay, M.D.¹, Sameer A. Parikh, M.B.B.S.¹

Division of Hematology, Mayo Clinic, Rochester, MN ²Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN ³Division of Hematology / Oncology, Mayo Clinic, Phoenix, AZ ⁴Division of Hematology / Oncology, Mayo

⁵Division of Hematopathology, Mayo Clinic, Rochester, MN ⁶Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN ⁷Department of Nursing, Mayo Clinic, Rochester, MN ⁸Department of Pharmacy, MN ⁸Department of Pharmacy, MN ⁸Department of

DEFINITIONS

- NA Novel agent, e.g., cBTKi or BCL2i
- **NASeq** Novel agent sequence
 - o cBTKi → BCL2i
 - o BCL2i → cBTKi
- **TTNMD** Time to next mechanism of therapy or death

BACKGROUND

- NAs, including covalent Bruton tyrosine kinase inhibitors (cBTKi) and B-cell lymphoma 2 inhibitors (BCL2i) as monotherapies or in combination with anti-CD20 monoclonal antibodies (CD20mAb), are effective for the treatment of chronic lymphocytic leukemia (CLL) in both the frontline (1L) and relapsed/refractory (R/R) settings.
- Sequential single NA-based therapies allow for durable disease control in many patients with CLL, though whether cBTKi followed by BCL2i (cBTKi → BCL2i) or BCL2i followed by cBTKi (BCL2i → cBTKi) leads to a longer duration of disease control remains unknown.

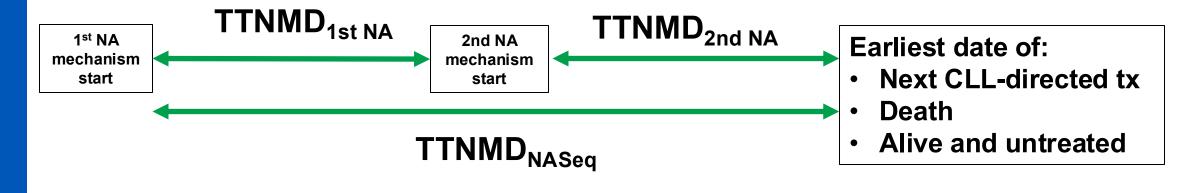
METHODS

Single-center retrospective study

Inclusion Criteria:

- Received care at Mayo Clinic for CLL between 1/1/2012 and 4/1/2025
- Received sequential single NA-based therapies: cBTKi and BCL2i (+/- CD20mAB)
 - o Administered first NA in 1L or R/R setting

Exclusion Criteria:


- Received a CLL-directed NA prior to NASeq
- Treated with at least one of the NAs in NASeg for Richter transformation
- Received any other CLL-directed therapy between the NAs in the sequence

Data Collection:

- Clinical and disease characteristics at first NA initiation
- Prior treatment history
- Duration of each single NA therapy and reasons for therapy discontinuation
- For patients who discontinued therapy due to intolerance or completion of planned therapy and subsequently received treatment within the same class of NA:
- Entire duration of treatment with NA with the same mechansims and treatment-free observation were included in TTNMTD
- Allowed for capturing the entire duration of disease control from each NA mechanism

Statistical Approach:

- Kaplan-Meier method used to estimate TTNMD and overall survival (OS)
- Multivariable Cox models used for outcome analysis with results reported as hazard ratios (HR) and 95% confidence intervals (95% CI)

PRIMARY OBJECTIVE

Compare TTNMD_{NASeq} between cBTKi → BCL2i and BCL2i -> cBTKi to determine which treatment sequence allowed for more durable disease control.

BCL2i → cBTKi cBTKi → BCL2i

RESULTS

TABLE: Characteristics at Initiation of First NA in Sequence

	BCLZI 7 CB I KI	(N=149)	
	(N=19)		
	N with data	N with data	
	n (%)	n (%)	p value
Age at treatment initiation,		64.3	0.051
median [range]	[37.0 – 85.6]	[39.5 – 85.9]	
Sex	19	149	0.663
Female	6 (32)	40 (27)	
Male	13 (68)	109 (73)	
Rai Stage	14	112	0.712
0	2 (14)	15 (13)	
1 / 11	4 (29)	48 (43)	
III / IV	8 (57)	49 (44)	
IGHV Mutation Status	14	110	0.260
Mutated	4 (29)	18 (16)	
Unmutated	10 (71)	92 (84)	
FISH Results	13	95	0.478
Del(13q)	1 (8)	29 (31)	
Tri(12)	2 (15)	12 (13)	
Del(11q)	3 (23)	16 (17)	
Del(17p)	5 (39)	25 (26)	
Other	1 (8)	2 (2)	
Normal	1 (8)	11 (12)	
Complex Karyotype	6	20	0.105
No S	2 (33)	14 (70)	
Yes	4 (67)	6 (30)	
TP53 Aberrant	15	108	0.599
No	10 (67)	79 (73)	
Yes	5 (33)	29 (27)	
Line of Therapy	19	149	0.364
First NA in R/R setting	14 (74)	94 (63)	
First NA in 1L setting	5 (26)	55 (37)	
Prior chemotherapy	19	149	0.370
No	11 (58)	70 (47)	
Yes	8 (42)	79 (53)	

FIGURE 1: TTNMD for A. First NA in the sequence; B. Second NA in the sequence

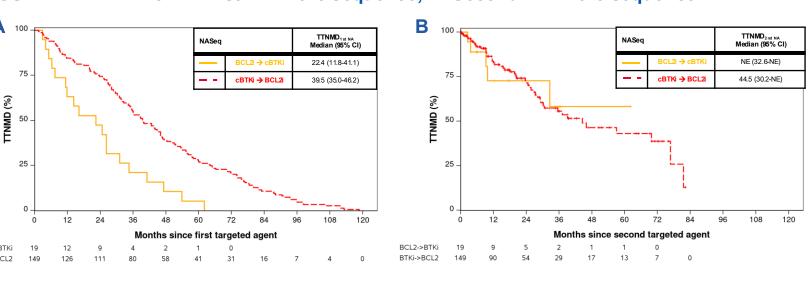
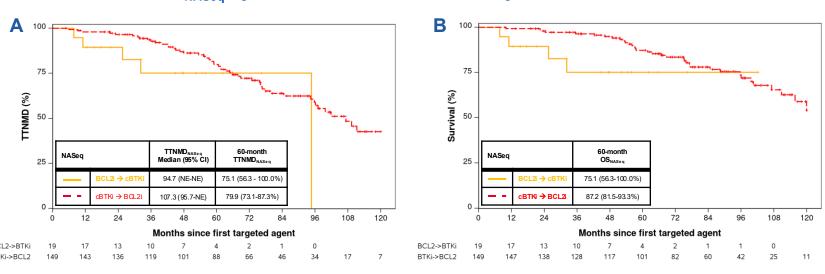



FIGURE 2: A. TTNMD_{NASeq} by cohort; B. Overall survival by cohort

- There was no significant difference in TTNMD_{NASeq} for patients treated with cBTKi → BCL2i vs BCL2i → cBTKi (HR 1.61, 95% CI 0.54, 4.81) after adjusting for TP53 aberration, prior chemoimmunotherapy exposure, and age.
- TP53 aberration was associated with inferior TTNMD_{NASeq}, regardless of NA treatment sequence (HR 3.15, 95% CI 1.64, 6.08).

CONCLUSIONS

- For patients who received sequential NA, either cBTKi → BCL2i or BCL2i -> cBTKi, the overall duration of disease control achieved with these two classes was not significantly different.
- Future multicenter collaborations may allow for more power to observe differences between these NA sequences.
- These data support <u>basing treatment decisions on patient</u> preference and comorbidities for patients with CLL when selecting between cBTKi and BCL2i as the first NA-based therapy.