

Inequalities in the diagnosis and survival of 30,071 people consecutively diagnosed with CLL in England between 2014 and 2021: preliminary analysis from the UNCOVER Study Group

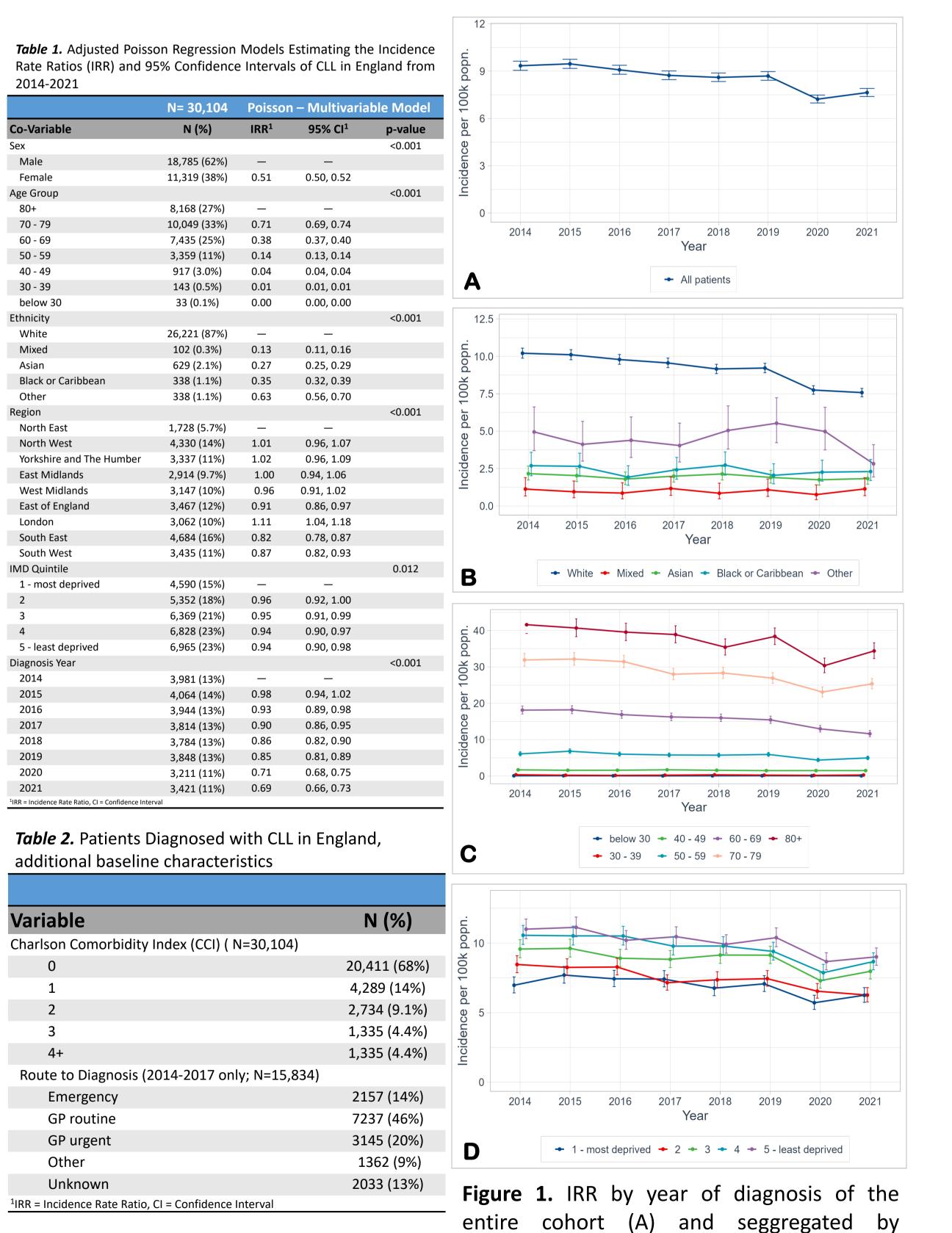
Temitope Erinfolami¹, Amelia Fisher^{2,3}, Indrani Karpha^{1,4}, Yeong Lim^{1,4}, Nurunnahar Akter¹, Toyyib Abdulkareem¹, Brogan Johnston⁴, Catrin Tudur Smith¹, Hilary Lindsay⁵, Shaun Bowden⁵, Debbie Yates⁵, Lelia Duley⁵, David Allsup⁶, Hanhua Liu⁷, Andrew Pettitt^{1,4}, Nagesh Kalakonda^{1,4}, Mark Bishton^{8,9}, Nicolas Martinez-Calle⁸

1. University of Liverpool, Liverpool, UK; 2. University of Leeds, Leeds UK; 3. Leeds Teaching Hospitals NHS Trust, Leeds, UK; 4. Clatterbridge Cancer Centre NHS Foundation, UK; 8. University of Hull, United Kingdom (UK); 7. National Disease Registration Service, NHS England, UK; 8. Nottingham University Hospitals NHS Trust; 9. University of Nottingham, Nottingham, UK

RESULTS

INTRODUCTION

- ♦UNCOVER is a blood cancer health data research programme that utilises routinely collected NHS data provided by the National Disease Registration Service (NDRS).
- **♦UNCOVER** quality-assured collation from multiple sources and includes with diagnosed unselected patients haematological malignancies in England from 2014 to 2021.
- ♦The present study reports UNCOVER data focused on describing recent epidemiology of CLL in England.


METHODS

- ♦ Patients 18 years and older, diagnosed with CLL from January 2014 to December 2021 were included, with follow-up until July 2023.
- ♦ Post-mortem diagnosis were were excluded.
- ♦ Incidence rate ratios (IRR) were calculated Poisson regression to examine associations between incidence and baseline characteristics.
- ♦ Cox proportional hazards regression was applied to assess associations between baseline characteristics and overall survival (OS).
- ♦ Fine-Gray (F-G) competing risk regression was utilised to estimate sub-distribution hazard ratios (sHR) for mortality from CLL vs other causes. Net survival was calculated using the Pohar-Perme estimator.
- ♦ Models covariates: Gender, age at diagnosis (categorised), ethnicity, government region, indices of multiple deprivation (IMD) quintiles, and year of diagnosis. Cox and F-G models also included the Charlson comorbidity index (CCI).

\diamond 30071 patients met inclusion criteria.

Incidence analysis

- \diamond Median age at diagnosis 71 (IQR 65-80).
- ♦Incidence 8.12/100.000 population, increases with age, predominates in Caucasic males (62% males) and dependent on IMD quintile.

quintile (D).

ethnicity (B) age at diagnosis (C) and IMD

Mixed: 66% Asian: 71% Black/Caribean: 679 N. West: 66% E. Midlands: 64% London: 66% • 3337 3007 2622 2143 1730 13 • 2914 2563 2235 1828 1450 10 • 3147 2775 2463 2028 1616 12 • 3467 3079 2698 2236 1815 13 • 3062 2717 2391 1939 1571 12 • 4684 4094 3586 2920 2340 18 • 3433 3020 2658 2198 1809 14 • 6369 5573 4893 3936 32 • 6828 6111 5351 4427 36 • 6964 6265 5534 4560 36 **Figure 3.** CLL overall survival by sex (A), age (B), ethnicity (C), CCI (D),

region (E) and IMD quintile (F). Percentages indicated are 5-year overall survival.

Survival analysis

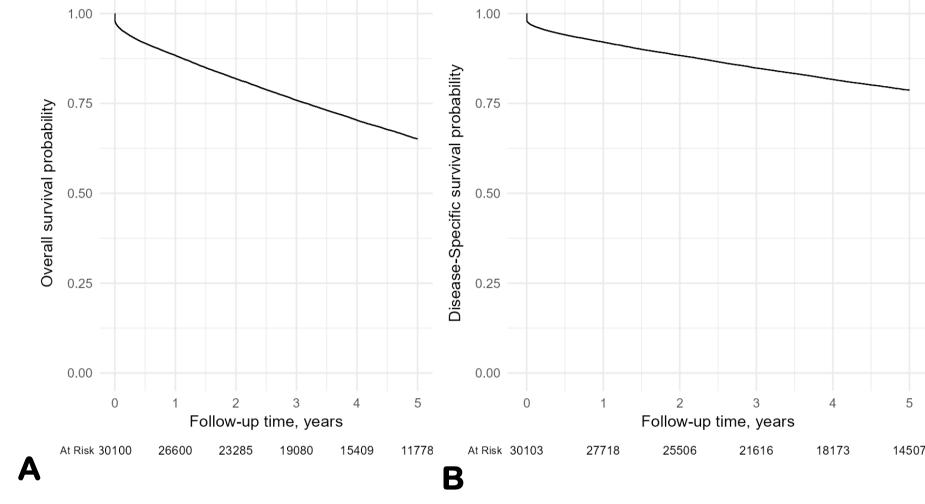


Figure 2. Overall Survival (A) and disease-specific survival (B) of CLL in England, 2014-2021

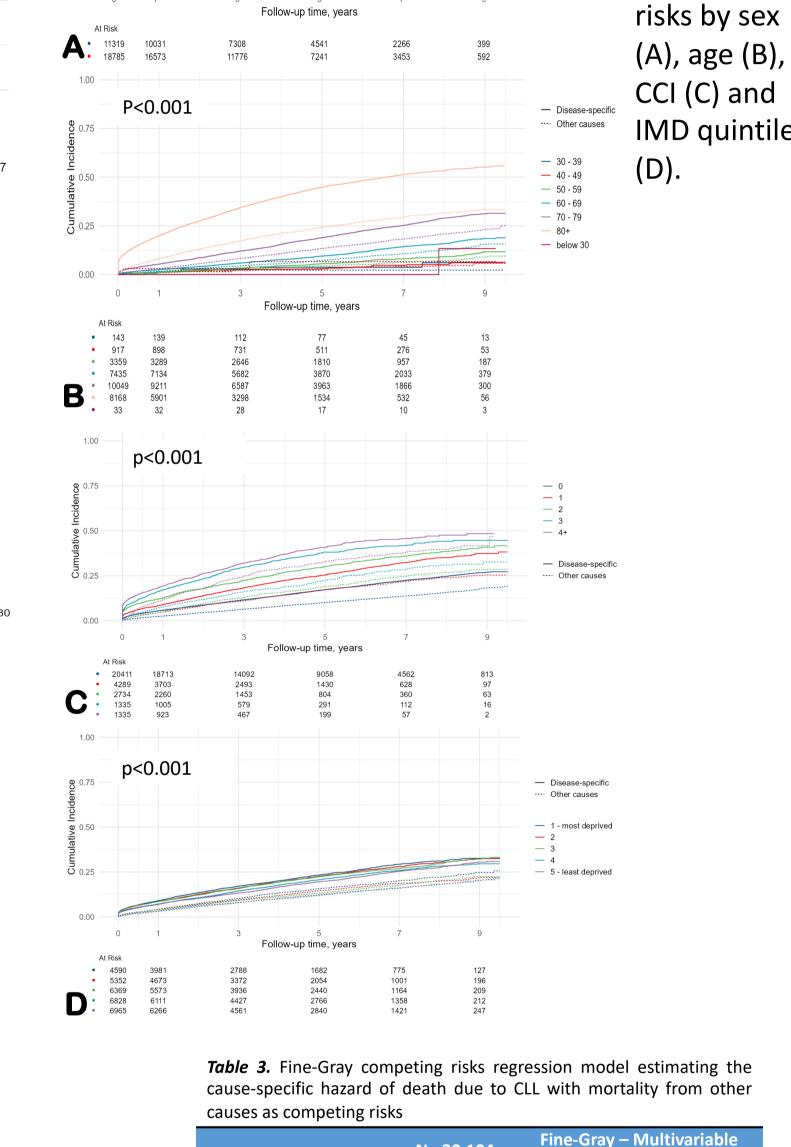


Figure 4.

Cumulative

incidence of

CLL mortality

presence of

competing

	N= 30,104	Fine-Gray – Multivariable Model		
o-Variable	5-year mortality % (95% CI)	HR ¹	95% Cl ¹	p-value
X	70 (3370 CI)			<0.001
Male	22% (21%, 23%)	_	_	
Female	21% (20%, 21%)	0.82	0.78, 0.87	
ge Group				< 0.001
80+	45% (44%, 46%)	_	_	
70 - 79	19% (18%, 20%)	0.38	0.36, 0.40	
60 - 69	9.4% (8.7%, 10%)	0.20	0.18, 0.21	
50 - 59	5.6% (4.8%, 6.5%)	0.11	0.10, 0.13	
40 - 49	3.0% (2.0%, 4.3%)	0.07	0.05, 0.09	
30 - 39	3.7% (1.4%, 7.9%)	0.07	0.03, 0.16	
below 30	-	0.03	0.00, 0.19	
hnicity				< 0.001
White	22% (21%, 22%)	_	_	
Mixed	27% (18%, 36%)	1.64	1.11, 2.42	
Asian	16% (13%, 20%)	0.76	0.62, 0.93	
Black or Caribbean	19% (15%, 24%)	1.00	0.78, 1.28	
Other	19% (14%, 23%)	1.11	0.86, 1.42	
arlson comorbidity index				<0.001
0	17% (17%, 18%)	_	_	
1	25% (24%, 27%)	1.20	1.12, 1.28	
2	30% (28%, 32%)	1.36	1.26, 1.46	
3	38% (35%, 41%)	1.60	1.45, 1.77	
4+	41% (38%, 44%)	1.59	1.44, 1.76	
ID Quintile				<0.001
1 - most deprived	23% (22%, 25%)	_	_	
2	23% (21%, 24%)	0.91	0.83, 0.99	
3	22% (21%, 23%)	0.83	0.76, 0.90	
4	21% (20%, 22%)	0.76	0.70, 0.82	
5 - least deprived	20% (19%, 21%)	0.70	0.65, 0.76	
agnosis Year				<0.001
2014	21% (20%, 23%)	_	_	
2015	20% (19%, 21%)	0.92	0.85, 1.00	
2016	20% (19%, 21%)	0.85	0.79, 0.93	
2017	20% (19%, 22%)	0.81	0.75, 0.89	
2018	21% (20%, 23%)	0.86	0.78, 0.94	
2019	22% (20%, 24%)	0.88	0.80, 0.96	
2020	20% (18%, 21%)	0.99	0.89, 1.10	
2021	14% (13%, 16%)	0.86	0.77, 0.96	
: = Hazard Ratio, CI = Confidence Interval				

CONCLUSIONS

- ♦UNCOVER Is the largest European study of CLL epidemiology.
- **♦We** independent demonstrate associations between demographic, socioeconomic, and clinical variables with INCIDENCE and SURVIVAL in CLL.
- higher **♦Incidence** and survival was shorter for males, older individuals, and those from more economically deprived areas.
- ♦The COVID-19 pandemic was associated with fewer diagnoses and increased mortality.
- ♦ CLL diagnosis was predominant in early stage and with low CLL-specific mortality suggesting that competing risks dictate survival outcomes.
- ♦Further analysis of the data including timing and type of treatment is underway and will provide further insight into the correlations observed.

REFERENCES

1.English indices of deprivation 2019 - GOV.UK [Internet]. [cited 2025 May 2	-					
	of-					
Available from: https://www.gov.uk/government/statistics/english-indices-c						
deprivation-2019						
2. Estimates of the population for England and Wales - Office for National Statisti	cs					
[Internet]. [cited 2025 May 2]. Available from	n:					
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/pop	วน					
lationestimates/datasets/estimatesofthepopulationforenglandandwales						
3. Revision of the European Standard Population - Report of Eurostat's task force -						
2013 edition [Internet]. [cited 2025 May 2]. Available from						
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-ra-13-028						
4. Perme MP, Stare J, Estève J. On Estimation in Relative Survival. Biometrics. 20	12					
Mar;68(1):113-20.						
5. Pohar Perme M, Estève J, Rachet B. Analysing population-based cancer survival	l _					
settling the controversies. BMC Cancer. 2016 Dec;16(1):933.						
6. Cancer survival smoothed life tables - Office for National Statistics [Internet]. [cited						
2025 May 21. Available from						

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditio

7. R Core Team. R: A language and environment for statistical computing [Internet] Vienna, Austria: R Foundation for Statistical Computing; 2024 [cited 2022 Dec 9]. Available from: https://www.R-project.org/

nsanddiseases/datasets/cancersurvivalsmoothedlifetables

Poster 1705, presented at 2025 IWCLL meeting. Contact information: Nicolás Martínez Calle. Nottingham University Hospitals. Email: n.martinez-calle@nhs.net